öéèåè ðëúá áî÷åø òì éãé à äæ÷ï öôéä áäåãòä

øãéåñ ëãåø äàøõ äåà 6371 ÷"î. àí úòùä çùáåï (àúä éåãò, 2 ôàé R, ñéðåñ åëå'), úøàä ùìâáé 2 ð÷åãåú äîøåç÷åú 10 ÷"î ääáãì áàåøê ä÷å äéùø äîçáø àú äð÷åãåú ìáéï àåøê ä÷å ùäåìê òì ò÷îåîéåú ëãåø äàøõ äåà......

4 îéìéîèø.

ëìåîø àí äøîú àú äøàù 40 ñ"î îòì ÷å äîéí éù ìê ÷å øàéä éùéø ìîøç÷ 10 ÷"î âí àí ëãåø äàøõ òâåì.

æä ùîéùäå îôøñí ñøèéí áéåèéåá òåã ìà äåôê àåúå ìéåãò/çëí/öåã÷. áòéðé (àáì ìà îçééá àåúê) éù ëàï 2 øîåú èîèåí: äàçú – àéìå ùîàîéðéí ìù÷øéí îúåê áåøåú (çì÷í äâéáå ìñøèåï) àáì äøáä éåúø ðîåê éåùá îé ùôøñí àú äñøè åìà îúáééù – ëøâò ìà áøåø àí îáåøåú àå îìù÷ø áîöç ðçåùä.

åòëùéå, ôúåø àú äçéãä îìîòìä.

àå ùâí îúîèé÷ä æä ù÷øéí ùì äîîñã.

ð.á. áøåø ìé ùæä ìà éùðä ëìåí åäèøåì ôùåè éäéä îáñåè, àáì ìà éëåìúé ìäúàô÷. îúðöì.
îéñèø àøáò îéìéîèø, æé÷ðúê îáééùú àåúê.
îñëï

https://earthcurvature.com/

Earth Curvature Calculator

by Eldøy Projects
Accurately calculate the curvature you are supposed to see on the ball Earth.

Distance:



Distance Curvature
1 km 0.00008 km = 0.08 meters
2 km 0.00031 km = 0.31 meters
5 km 0.00196 km = 1.96 meters
10 km 0.00785 km = 7.85 meters
20 km 0.03139 km = 31.39 meters
50 km 0.19620 km = 196.20 meters
100 km 0.78479 km = 784.79 meters
200 km 3.13897 km = 3138.97 meters
500 km 19.6101 km = 19610.09 meters
1000 km 78.3196 km = 78319.62 meters

Explanation:

The Earth's radius (r) is 6371 km or 3959 miles, based on numbers from Wikipedia,
which gives a circumference (c)of c = 2 * π * r = 40 030 km
We wish to find the height (h) which is the drop in curvature over the distance (d)
Using the circumference we find that 1 kilometer has the angle
360° / 40 030 km = 0.009°. The angle (a) is then a = 0.009° * distance (d)
The derived formula h = r * (1 - cos a) is accurate for any distance (d)