
ðëúá áî÷åø òì éãé
à äæ÷ï
øãéåñ ëãåø äàøõ äåà 6371 ÷"î. àí úòùä çùáåï (àúä éåãò, 2 ôàé R, ñéðåñ åëå'), úøàä ùìâáé 2 ð÷åãåú äîøåç÷åú 10 ÷"î ääáãì áàåøê ä÷å äéùø äîçáø àú äð÷åãåú ìáéï àåøê ä÷å ùäåìê òì ò÷îåîéåú ëãåø äàøõ äåà......
4 îéìéîèø.
ëìåîø àí äøîú àú äøàù 40 ñ"î îòì ÷å äîéí éù ìê ÷å øàéä éùéø ìîøç÷ 10 ÷"î âí àí ëãåø äàøõ òâåì.
æä ùîéùäå îôøñí ñøèéí áéåèéåá òåã ìà äåôê àåúå ìéåãò/çëí/öåã÷. áòéðé (àáì ìà îçééá àåúê) éù ëàï 2 øîåú èîèåí: äàçú – àéìå ùîàîéðéí ìù÷øéí îúåê áåøåú (çì÷í äâéáå ìñøèåï) àáì äøáä éåúø ðîåê éåùá îé ùôøñí àú äñøè åìà îúáééù – ëøâò ìà áøåø àí îáåøåú àå îìù÷ø áîöç ðçåùä.
åòëùéå, ôúåø àú äçéãä îìîòìä.
àå ùâí îúîèé÷ä æä ù÷øéí ùì äîîñã.
ð.á. áøåø ìé ùæä ìà éùðä ëìåí åäèøåì ôùåè éäéä îáñåè, àáì ìà éëåìúé ìäúàô÷. îúðöì.
îéñèø àøáò îéìéîèø, æé÷ðúê îáééùú àåúê.
îñëï
https://earthcurvature.com/
Earth Curvature Calculator
by
Eldøy Projects
Accurately calculate the curvature you are supposed to see on the ball Earth.
Distance:
| Distance |
Curvature |
| 1 km |
0.00008 km = 0.08 meters |
| 2 km |
0.00031 km = 0.31 meters |
| 5 km |
0.00196 km = 1.96 meters |
| 10 km |
0.00785 km = 7.85 meters |
| 20 km |
0.03139 km = 31.39 meters |
| 50 km |
0.19620 km = 196.20 meters |
| 100 km |
0.78479 km = 784.79 meters |
| 200 km |
3.13897 km = 3138.97 meters |
| 500 km |
19.6101 km = 19610.09 meters |
| 1000 km |
78.3196 km = 78319.62 meters |
Explanation:
The Earth's radius (r) is 6371 km or 3959 miles, based on numbers from
Wikipedia,
which gives a circumference (c)of c = 2 * π * r = 40 030 km
We wish to find the height (h) which is the drop in curvature over the distance (d)
Using the circumference we find that 1 kilometer has the angle
360° / 40 030 km = 0.009°. The angle (a) is then a = 0.009° * distance (d)
The derived formula h = r * (1 - cos a) is accurate for any distance (d)
